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CHAPTER 1. PYTHON DEEP LEARNING TUTORIAL

Python  is  a  general-purpose  high  level  programming  language  that  is  used widely in data science and for designing deep learning algorithms. 

This  brief  tutorial  introduces  Python  and  its  libraries  like  Scipy,  Pandas, Numpy,  Matplotlib;  frameworks  like  Theano,  Keras,  TensorFlow.  The tutorial  book  explains  how  the  different  libraries  and  frameworks  can  be applied to solve complex real world problems. 

1.1       INTRODUCTION TO  PYTHON DEEP LEARNING

Hierarchical learning or structured deep learning or deep learning in short is part of the family of machine learning methods which are themselves a subset of the broader field of Artificial Intelligence. 

Deep  learning  defined  as  a  class  of  machine  learning  algorithms  that  use several  layers  of  nonlinear  processing  units  for  transformation  and  feature extraction.  The  output  of  each  successive  layer  from  the  previous  layer  is used as input. 

Deep neural networks, recurrent neural networks and deep belief networks have  been  used  in  several    fields  such  as  speech  recognition,  computer vision,  audio  recognition,  natural  language  processing,  social  network filtering,  machine  translation,  and  bioinformatics  where  they  produced results comparable to and in some cases better than human experts have. 

Deep Learning Algorithms and Networks −

are based on the unsupervised learning of multiple levels of representations  or  features  of  the  data.  Higher-level  features are  derived  from  lower  level  features  to  form  a  hierarchical representation. 

use some form of gradient descent algorithm for training. 

PYTHON DEEP LEARNING ENVIRONMENT

This subsection studies the environment set up for Python Deep Learning. the following software is have to be installed for using deep learning algorithms. 

Python 3.9+

https://www.amazon.com/dp/B083LJ8HP2

Matplotlib

Scipy with Numpy

TensorFlow

Keras

Theano

It is strongly recommend to install Anaconda distribution that comes with all of those packages NumPy, Python, Matplotlib, and SciPy. 

Eensure that the different types of software are installed properly. 

Let us go to our command line program and type in the following command

−

$ python

Python 3.7 |Anaconda custom (32-bit)| (default, Oct 13 2020, 14:21:34)

[GCC 7.2.0] on linux

Next, required libraries are imported the and their versions are printed −

import numpy

print numpy.__version__

 OUTPUT

1.14.2

1.3       INSTALLATION OF, TENSORFLOW, THEANO AND KERAS

Before  installing  the  packages  −  Theano,  Keras  and  TensorFlow,  confirm that  the  pip  is  installed.  The  package  management  system  in  Anaconda  is called the pip. 

To confirm the installation of pip, type the following in the command line −

$ pip

Once  the  installation  of  pip  is  confirmed,  TensorFlow  and  Keras  can  be installed by executing the following command −

$pip install theano

$pip install tensorflow

$pip install keras

Check the installation of Theano by running the following line of code −

$python –c “import theano: print (theano.__version__)” 

 OUTPUT

1.0.1

Confirm  the  installation  of  Tensorflow  by  executing  the  following  line  of code −

$python –c “import tensorflow: print tensorflow.__version__” 

 OUTPUT

1.7.0

Execute  the  following  line  of  code  to  confirm  the  installation  of Keras by −

$python –c “import keras: print keras.__version__” 

Using TensorFlow backend

 OUTPUT

2.1.5

CHAPTER 2. PYTHON DEEP BASIC MACHINE

LEARNING

Artificial Intelligence (AI) is any technique, code or algorithm that enables a computer  to  mimic  human  intelligence  or  cognitive  behavior.  Machine Learning  (ML)  is  a  subset  of  AI  that  uses  statistical  methods  to  enable machines to learn and improve with experience. Deep Learning is a subset of  Machine  Learning,  which  makes  the  computation  of  multi-layer  neural networks feasible. Machine Learning is seen as shallow learning while Deep Learning is seen as hierarchical learning with abstraction. 

Machine  learning  deals  with  a  wide  range  of  concepts.  The  concepts  are listed below −

supervised

unsupervised

linear regression

cost functions

reinforcement learning

under-fitting

overfitting

hyper-parameter, etc. 

The supervised learning learns to predict values from labelled data. One ML

technique  that  widely  used  is  classification,  where  target  values  are  discrete values;  for  example,  cats  and  dogs.  Another  type  technique  in  machine learning  is  regression.  Regression  works  on  the  target  values.  The  target values  are  continuous  values;  for  example,  the  stock  market  data  can  be analyzed using Regression. 

In unsupervised learning, the inferences are made from the input data that is not  structured  or  labeled.  Imagine  if    we  need  to  make  sense  of  million medical  records  and,  find  the  outliers,  underlying  structure  or  detect

anomalies, clustering technique is used to divide data into broad clusters. 

Data sets are divided into testing sets, training sets, validation sets and so on. 

In  2012  a  breakthrough  brought  the  concept  of  Deep  Learning  into prominence.  An  algorithm  classified  1  million  images  into  1000  categories successfully using 2 GPUs and latest technologies like Big Data. 

2.1 RELATING TRADITIONAL MACHINE LEARNING AND DEEP

LEARNING

One  of  the  major  challenges  encountered  in  traditional  machine  learning models  is  a  process  called  feature  extraction.  The  programmer  specifies  the features  to  be  looked  out  for  and  tell  the  computer.  These  features  help  in making decisions. 

Many  algorithms  rarely  work  well  with  entering  raw  data,  so  feature extraction is a critical part of the traditional machine learning workflow. 

This  places  a  huge  responsibility  on  the  programmer,  and  the  algorithm's efficiency  relies  heavily  on  how  inventive  the  programmer  is.  For  complex problems such as handwriting recognition or object recognition, this is a huge task. 

Deep  learning,  with  the  ability  to  learn  multiple  layers  of  representation,  is one  of  the  few  methods  that  has  helped  automatic  feature  extraction.  The lower layers perform automatic feature extraction, without requiring guidance from the programmer. 
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CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Network, or just neural network for short, is not a new idea. 

It has been around for about 80 years. 

However, until 2011 Deep Neural Networks became popular, with the use of new techniques, powerful computers, and  huge dataset availability. 

A neural network mimics a neuron, which has axon, dendrites, a nucleus, and terminal axon. 

Two  neurons  compose  a  network.  These  neurons  transfer  information  via synapse between the dendrites of one and the terminal axon of another. 
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A probable model of an artificial neuron looks like this  −

A neural network will look like as shown below −

The  circles  are  nodes  or  neurons,  with  their  functions  on  the  data  and  the edges/lines  connecting  them  are  the  weights/information  being  passed along. 

Each  column  represents  a  layer.  The  first  layer  of  your  data  is  the  input layer.  Then,  the  hidden  layers  are  located  between  the  input  layer  and  the output layer. 

If  you  have  one  or  a  few  hidden  layers,  then  you  have  a  shallow  neural

network.  If  you  have  many  hidden  layers,  then  you  have  a  deep  neural network. 

In  this  model,  you  have  input  data,  you  weight  it,  and  pass  it  through  the function  in  the  neuron  that  is  called  activation  function  or  threshold function. 

Basically, it is the sum of all of the values after comparing it with a certain value. If you fire a signal, then the result is (1) out, or nothing is fired out, then (0). That is then weighted and passed along to the next neuron, and the same sort of function is run. 

The activation function could be a relu or sigmoid (s-shape) function. 

As  for  the  weights,  they  are  just  random  to  start,  and  they  are  unique  per input into the neuron/node. 

The  most  basic  type  of  neural  network  in  a  typical  "feed  forward",  your information pass straight through the network you created, and you compare the output to what you hoped the output would have been using your sample data. 

From  here,  you  need  the  weights  need  to  be  adjusted  to  help  you  get  your output to match your desired output. 

The  act  of  sending  data  straight  through  a  neural  network  is  called  a  feed forward neural network. 

Our data goes from input, to the layers, in order, then to the output. 

When we go backwards and begin adjusting weights to minimize loss/cost, this process is known as back propagation. 

This is an optimization problem.  With the neural network, in real practice, we  have  to  deal  with  hundreds  of  thousands  of  variables,  or  millions,  or more. 

The  first  solution  used  the  algorithm  stochastic  gradient  descent  as optimization  method.  Now,  there  are  options  like  Adam  Optimizer, AdaGrad and so on. Either way, this is a massive computational operation. 

That is why Neural Networks were mostly left on the shelf for over half a century. It was only very recently that we even had the powerfull machines to  even  consider  doing  these  operations,  and  the  properly  sized  datasets  to match. 
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For  simple  classification  tasks,  the  neural  network  is  relatively  close  in performance to other simple algorithms like K Nearest Neighbors. The real utility  of  neural  networks  is  realized  when  we  have  much  larger  data,  and much  more  complex  questions,  both  of  which  outperform  other  machine learning models. 

3.1 DEEP NEURAL NETWORKS

A  deep  neural  network  (DNN)  is  an  ANN  with  multiple  hidden  layers between  the  input  and  output  layers.  Similar  to  shallow  ANNs,  DNNs models complex non-linear functions. 

The main purpose of a neural network is to receive a set of inputs, perform progressively  complex  calculations  on  them,  and  give  output  to  solve  real world problems like classification. 

We  have  an  input,  an  output,  and  a  flow  of  sequential  data  in  a  deep network. 

[image: Image 7]

Neural  networks  are  widely  used  in  reinforcement  learning  and  supervised learning problems. These networks are based on a set of layers connected to each other. 

In deep learning, the number of hidden layers, mostly non-linear, can be as large as 1000 layers. 

DL models produce more accurate results than normal ML networks. 

Gradient  descent  method  is  used  for  minimising  the  loss  function  and optimizing the network. 

We  can  use  the  Imagenet,  a  repository  of  millions  of  digital  images  to classify a dataset into categories like dogs and cats. DL nets are increasingly used  for  dynamic  images  apart  from  static  ones  and  for  text  analysis  and time series. 

Training the data sets forms an important part of Deep Learning models. In addition, Backpropagation is the main algorithm in training DL models. 

DL  deals  with  training  large  neural  networks  with  complex  input  output transformations. 

One example of DL is the mapping of a photo to the name of the person(s) in  photo  as  they  do  on  social  networks  and  describing  a  picture  with  a phrase is another recent application of DL. 

Neural  networks  are  functions  that  have  inputs  like  x1,x2,x3…that  are transformed to outputs like z1,z2,z3 and so on in two (shallow networks) or several intermediate operations also called layers (deep networks). 

The  biases  and  weights  change  from  layer  to  layer.  ‘w’  and  ‘v’  are  the
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weights or synapses of layers of the neural networks. 

Supervised  learning  is  considered  to  be  the  best  use  case  of  deep  learning problem. Here we have large set of data inputs with a desired set of outputs. 

Here back propagation algorithm is applied to get correct output prediction. 

The basic data set of deep learning is the MNIST, a dataset of handwritten digits. 

To classify images of handwritten digits from this dataset. we train deep a Convolutional Neural Network with Keras. 

The  activation  or  firing  of  a  neural  net  classifier  produces  a  score.  For example, to classify patients as healthy or sick, the parameters such as body temperature, weight, height and blood pressure etc. can be considered. 

A low score means he is healthy and a high score means patient is sick. 

Each  node  in  output  and  hidden  layers  has  its  own  classifiers.  The  input layer  takes  inputs  and  passes  on  its  scores  to  the  next  hidden  layer  for further activation and this goes on till the output is reached. 

This progress from input to output from left to right in the forward direction is called forward propagation. 

Credit  assignment  path  (CAP)  in  a  neural  network  is  the  series  of

transformations  starting  from  the  input  to  the  output.  CAPs  elaborate probable causal connections between the input and the output. 

CAP depth for a given feed forward neural network or the CAP depth is the number  of  hidden  layers  plus  one  as  the  output  layer  is  included.  For recurrent  neural  networks,  where  a  signal  may  propagate  through  a  layer several times, the CAP depth can be potentially limitless. 

3.2 DEEP NETS AND SHALLOW NETS

There is no clear threshold of depth that divides shallow learning from deep learning;  but  it  is  mostly  agreed  that  for  deep  learning  which  has  multiple non-linear layers, CAP have to be greater than two. 

Basic  node  in  a  neural  net  is  a  perception  mimicking  a  neuron  in  a biological neural network. Then we have multi-layered Perception or MLP. 

Each set of inputs is modified by a set of weights and biases; each edge has a unique weight and each node has a unique bias. 

The prediction accuracy of a neural net depends on its biases and weights. 

The  process  of  improving  the  accuracy  of  neural  network  is called  training.   The  output  from  a  forward  prop  net  is  compared  to  that value which is known to be correct. 

The the loss function or cost function is the difference between the actual output and the generated output. 

The  point  of  training  is  to  make  the  cost  of  training  as  small  as  possible across  millions  of  training  examples.  To  do  this,  the  network  tweaks  the biases and weights until the prediction matches the correct output. 

Once  trained  well,  a  neural  net  has  the  potential  to  make  an  accurate prediction every time. 

When  the  pattern  gets  complex  and  you  want  your  computer  to  recognize them, you have to go for neural networks.In such complex pattern scenarios, neural network outperformsall other competing algorithms. 

The current GPUs can train the network faster than ever before. Deep neural networks are already revolutionizing the field of AI Computers  have  proved  to  be  good  at  following  detailed  instructions  and

performing  repetitive  calculations  and  but  have  been  not  so  good  at recognizing complex detailed patterns. 

If there is the problem of recognition of simple patterns, logistic regression classifier  or  support  vector  machine  (svm)  can  do  the  job  well,  but  as  the complexity  of  pattern  increases,  there  is  no  way  but  to  go  for  deep  neural networks. 

Therefore,  for  complex  patterns  like  human  face,  shallow  neural  networks fail  and  have  no  alternative  but  to  go  for  deep  neural  networks  with  more layers. The deep nets are able to do their job by breaking down the complex patterns into simpler  ones. For example,  human face; adeep  net would  use edges  to  detect  parts  like  lips,  nose,  eyes,  ears  and  so  on  and  then  re-combine these together to form a human face

The accuracy of correct prediction has become so accurate that recently at a Google Pattern Recognition Challenge, a deep net beat a human. 

This idea of a web of layered perceptron has been around for some time; in this area, deep nets mimic the human brain. But one downside to this is that they take long time to train, a hardware constraint However recent high performance GPUs have been able to train such deep nets  under  a  week;  while  fast  cpus  could  have  taken  weeks  or  perhaps months to do the same. 

3.3 CHOOSING A DEEP NET

How to choose a deep net? We have to decide if we are if we are trying to find  patterns  in  the  data  or  building  a  classifier  and  if  we  are  going  to  use unsupervised learning. To extract patterns from a set of unlabelled data, we use a Restricted Boltzman machine or an Auto encoder. 

The following points are considered while choosing a deep net −

For  text  processing,  sentiment  analysis,  parsing  and  name entity recognition, we use a recursive neural tensor network or a recurrent net or RNTN; 

The  recurrent  net  is  used  for  any  language  model  that operates at character level. 

Convolutional network or deep belief network DBN used for image recognition. 

convolutional  network  or  a  RNTN  used  for  object recognition. 

Recurrent net is used for speech recognition. 

In  general,  multilayer  perceptrons  with  rectified  linear  units  or  RELU  and deep belief networks are both good choices for classification. 

Its recommended to use Recurrent net in time series analysis. 

3.4 RESTRICTED BOLTZMAN NETWORKS OR AUTOENCODERS

- RBNS

The  issue  of  vanishing  gradients  have  been  tackled  in  2006  by  Geoff Hinton.  He  developed  novel  strategy  that  led  to  the  Restricted  Boltzman Machine - RBM, a shallow two layer net. 

The first layer is the visible layer and the second layer is the hidden layer. 

The  visible  layer  nodes  are    connected  to  every  node  in  the  hidden  layer. 

The network is known as restricted as no two layers within the same layer are allowed to share a connection. 

Encoding input data as vectors in network is achieved by the Autoencoders. 

They  create  a  compressed,  hidden,  or  representation  of  the  raw  data.  The vectors are useful in compressing the raw data this is the motivation behind dimensionality  reduction.  The  reconstruction  of  input  data  based  on  its hidden  representation  is  accomplished  by  Autoencoders  which  paired  with decoders. 

RBM  is  considered  to  be  the  mathematical  equivalent  of  a  two-way translator. A set of numbers that encodes the inputs which received from the forward  pass.  This  set  of  numbers  are  translated  back  into  reconstructed inputs by a backward pass. A high degree of accuracy is achieved by a well-trained net. 

The RBM is re-constructed to the input by trainin with different biases and weights until the input and there-construction are as close as possible. Note that the RBM data are not labelled. RBM sorts through data automatically; 
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by  adjusting  the  biases  and  weights,  an  RBM  is  extracting  important features  to  reconstruct  the  input.  RBM  is  designed  to  recognize  inherent patterns in data by applying feature extracting. Since they encode their own structure, they are also called auto-encoders. 

3.5 DEEP BELIEF NETWORKS - DBNS

By introducing a clever training method and combining RBMs, deep belief networks (DBNs) are formed. The problem of vanishing gradient is finally solved by this model. 

A DBN is similar in structure to a MLP (Multi-layer perceptron), but very different  when  it  comes  to  training.  it  is  the  training  that  enables  DBNs  to outperform their shallow counterparts

The first RBM hidden layer is taken as the visible layer of the second RBM

and the second RBM is trained using the outputs from the first RBM. This process is iterated untill every layer in the network is trained. 

Each RBM in a DBN learns the entire input. A DBN is fine-tuning the entire input in succession as the model slowly improves. 

At this level, inherent patterns in the data is detected by RBMs but without any  label  or  names.  To  complete  training  the  DBN,  we  introduce  labels  to the patterns and fine tune the net with supervised learning. 

A  very  small  set  of  labelled  samples  is  studied  such  that  the  features  and patterns are associated with a name. This small-labelled set of data is used for training. This set of labelled data can be very small when compared to the original data set. 

3.6 GENERATIVE ADVERSARIAL NETWORKS - GANS

When  deep  neural  nets  comprising  two  nets,  pitted  one  against  the  other, thus we called Generative adversarial networks

GANs  were  considered  as  the  most  interesting  idea  in  the  last  10  years  in ML. 

GANs  poses  huge  potential,  as  the  network-scan  learn  to  mimic  any distribution  of  data.  GANs  can  create  parallel  worlds  strikingly  similar  to our  own  in  any  domain:  music,  speech,  images.  They  are  machine  (robot) artists in a way, and their output is quite impressive. 

In  a  GAN,  one  neural  network,  is  called  generator,  generates  new  data instances, while the other, the discriminator, evaluates them for authenticity. 

3.7 RECURRENT NEURAL NETWORKS - RNNS

RNNSare  neural  networks  in  which  data  can  flow  in  any  direction.  Such networks  are  used  for  applications  such  as  Natural  Language  Processing (NLP) or language modelling. 

Utilizeing sequential information is the basic concept underlying RNNs. In a normal neural network all outputs and inputs are independent of each other. 

In order to predict the next word in a sentence we need to determine which words came before it. 
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RNNs are called recurrent because they the same task for every element of a sequence  is  repeated,  with  the  output  being  based  on  the  previous computations.  RNNs  thus  can  be  said  to  have  a  “memory”  that  captures information about what has been previously calculated. In theory, RNNs can use  information  in  very  long  sequences,  but  in  reality,  they  can  look  back only a few steps. 

Long  short-term  memory  networks  (LSTMs)  are  most  commonly  used RNNs. 

Together  with  convolutional  Neural  Networks,  RNNs  have  been  used  as part of a model to generate descriptions for unlabelled images. 

3.8 CONVOLUTIONAL DEEP NEURAL NETWORKS - CNNS

To  make  a  neural  network  deeper,  increase  the  number  of  layers  but  this increases  the  complexity  of  the  network  and  allows  us  to  model  functions that are more complicated. However, the number of biases and weights will increase exponentially. As a matter of fact, learning such difficult problems can  become  challenging.  Hence,  the  solution  is  the  convolutional  neural networks. 

CNNs are used; have been extensively used in computer vision and acoustic modelling for automatic speech recognition. 

The  idea  behind  convolutional  neural  networks  is  the  idea  of  a  “moving filter” which passes through the image. This moving filter, or convolution, 
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applies  to  a  certain  neighbourhood  of  nodes  which  for  example  may  be pixels, where the filter applied is 0.5 x the node value −

In  a  nutshell,  Convolutional  Neural  Networks  (CNNs)  are  composed  of multi-layer  neural  networks.  The  layers  are  sometimes  up  to  20  or  more with images as input data. 

CNNs  can  reduce  the  number  of  parameters  drastically  that  need  to  be tuned.  Therefore,  CNNs  efficiently  is  able  to  manage  the  high dimensionality of raw images. 

CHAPTER 4. TRAINING A NEURAL NETWORK

This chapter explains how to train a neural network. We will also learn back propagation algorithm and backward pass in Python Deep Learning. 

To  get  the  desired  output,  the  optimal  values  of  the  weights  of  a  neural network are defined. The neural network is trained by the iterative gradient descent  method.  We  randomly  initialize  the  weights.  After  random initialization, we make predictions on some subset of the data with forward-propagation process, compute the corresponding cost function C, and update each  weight  w  by  an  amount  proportional  to  dC/dw,  i.e.,  the  derivative  of the cost functions w.r.t. the weight. The proportionality constant is known as the learning rate. 

The  back-propagation  algorithm  is  used  to  calculate    the  gradients efficiently. The key observation of backward prop or backward propagation is  that  because  of  the  chain  rule’s  differentiation,  using  the  gradient  at  the neurons  the  gradient  in  the  neural  network  can  be  calculated.  Hence,  we calculate  the  gradients  backwards,  i.e.,  first  calculate  the  gradients  of  the output  layer,  then  the  top-most  hidden  layer,  followed  by  the  preceding hidden layer, and so on, ending at the input layer. 

The  back-propagation  algorithm  is  deploying  the  idea  of  a  computational graph, where each neuron is expanded to many nodes in the computational graph  and  performs  a  simple  mathematical  operation.  The  computational graph assumes that no any weights on the edges; all weights are assigned to the  nodes,  so  the  weights  become  their  own  nodes.  The  backward propagation  algorithm  is  then  run  on  the  computational  graph.  Once  the calculation is complete, only the gradients of the weight nodes are required for update. The rest of the gradients can be ignored. 

4.1 GRADIENT DESCENT OPTIMIZATION TECHNIQUE

One commonly used optimization function that adjusts weights according to the error they caused is called the “gradient descent.” 

Gradient  is  another  name  for  slope,  and  slope,  on  an  x-y  graph,  represents how two variables are related to each other: the rise over the run, the change in  distance  over  the  change  in  time,  etc.  In  this  case,  the  slope  is  the  ratio between  the  network’s  error  and  a  single  weight;  i.e.,  how  does  the  error

change as the weight is varied. 

To  put  it  more  precisely,  we  need  to  find  which  weight  produces  the  least error.  We  want  to  find  the  weight  that  correctly  represents  the  signals contained in the input data, and translates them to a correct classification. 

As a neural network learns, it slowly adjusts many weights so that they can map signal to meaning correctly. The ratio between network Error and each of those weights is a derivative, dE/dw that calculates the extent to which a slight change in a weight causes a slight change in the error. 

Each  weight  is  just  one  factor  in  a  deep  network  that  involves  many transforms;  the  signal  of  the  weight  passes  through  activations  and  sums over several layers. 

Consider  two  variables,  weight  and  error,  are  mediated  by  a  third variable, activation, through which the weight is passed. We can calculate how a change in weight affects a change in error by first calculating how a change in activation affects a change in Error, and how a change in weight affects a change in activation. 

Deep  learning  is  nothing  more  than  that  adjusting  a  model’s  weights  in response to the error it produces, until you cannot reduce the error any more. 

When the gradient value is small, the deep net trains slowly and if fast the value  is  high.  Inaccuracies  in  training  results  in  inaccurate  outputs.  The process of training the nets from the output back to the input is called back propagation or back prop. We know that forward propagation starts with the input  and  works  forward.  Back  prop  does  the  reverse/opposite  calculating the gradient from right to left. 

Let  consider  a  node  in  the  output  layer.  The  edge  uses  the  gradient  at  that node.  As  we  go  back  into  the  hidden  layers,  it  gets  more  complex.  The product of two numbers between 0 and 1 gives you a smaller number. The gradient value keeps getting smaller and as a result back prop takes a lot of time to train and accuracy suffers. 

4.2 CHALLENGES IN DEEP LEARNING ALGORITHMS

Several challenges limit the performance of both deep neural networks and shallow neural networks, like computation time and overfitting. The use of added layers of abstraction which allow them to model rare dependencies in

the training data affected DNNs by causing overfitting. 

Regularization  methods  such  as  drop  out,  data  augmentation,  early stopping,  and  transfer  learning  are  applied  during  training  to  overcome overfitting.  Drop  out  regularization  during  training  randomly  deletes  units from  the  hidden  layers  which  avoids  rare  dependencies.  DNNs  consider several  training  parameters  such  as  the  size,  i.e.,  the  number  of  layers  and the number of units per layer, the initial weights and learning rate. Finding optimal  parameters  is  not  always  practical  due  to  the  high  computational resources  and  cost  in  time.  Several  hacks  such  as  batching  can  speed  up computation. The large processing power of GPUs has significantly helped the  training  process,  as  the  matrix  and  vector  computations  required  are well-executed on the GPUs. 

4.3 DROPOUT

Dropout  is  a  famous  regularization  technique  for  neural  networks.  Deep neural networks are particularly prone to overfitting. 

One of the pioneers of Deep Learning Geoffrey Hinton said ‘If you have a deep  neural  net  and  it's  not  overfitting,  you  should  probably  be  using  a bigger one and using dropout’. 

Dropout is a technique where during each iteration of gradient descent, a set of  randomly  selected  nodes  are  dropped.  This  means  that  we  ignore  some nodes randomly as if they do not exist. 

Each  neuron  is  kept  with  a  probability  of  q  and  dropped  randomly  with probability  1-q.  The  value  q  may  be  different  for  each  layer  in  the  neural network.  A  value  of  0.5  for  the  hidden  layers,  and  0  for  input  layer  works well on a wide range of tasks. 

During  evaluation  and  prediction,  no  dropout  is  used.  The  output  of  each neuron  is  multiplied  by  q  so  that  the  input  to  the  next  layer  has  the  same expected value. 

The  idea  behind  Dropout  is  as  follows  −  In  a  neural  network  without dropout regularization, neurons develop co-dependency amongst each other that leads to overfitting. 

Implementation trick

Dropout  is  implemented  in  libraries  such  as  Pytorch  and  TensorFlow  by keeping  the  output  of  the  randomly  selected  neurons  as  0.  That  is,  though the neuron exists, its output is overwritten as 0. 

CHAPTER 5. PYTHON DEEP LEARNING -

IMPLEMENTATIONS

This chapter of Deep learning uses data of a certain bank. The objective is to predict the customer churning or data attrition - which customers are likely to leave this bank service. We use small Dataset is that contains 10000 rows with  14  columns.  We  already  installed  an  Anaconda  distribution,  and frameworks  like  TensorFlow,  Theano  and  Keras.  Keras  is  built  on  top  of Theano and Tensorflow. 

# Artificial Neural Network

# Installing Theano

pip install --upgrade theano

# Installing Tensorflow

pip install –upgrade tensorflow

# Installing Keras

pip install --upgrade keras

Step 1: Data preprocessing

In[]:

[image: Image 12]

# Importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

# Importing the database

dataset = pd.read_csv('Churn_Modelling.csv')

Step 2

Matrices  of  the  dataset  features  and  the  target  variable  have  been  created, which is column 14, labeled as “Exited”. 

The initial look of data is as shown below −

In[]:

X = dataset.iloc[:, 3:13].values

Y = dataset.iloc[:, 13].values

X

Output

Step 3

Y

Output

array([1, 0, 1, ..., 1, 1, 0], dtype = int64)

Step 4

Encodine string variables simplifies the analysis. Encode the different labels in the columns with values between 0 to n_classes-1 automatically by using the ScikitLearn function ‘LabelEncoder’. 

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

[image: Image 13]

labelencoder_X_1 = LabelEncoder()

X[:,1] = labelencoder_X_1.fit_transform(X[:,1]) labelencoder_X_2 = LabelEncoder()

X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2]) X

Output

From  the  above  output,  country  names  are  replaced  by  0,  1  and  2;  while male and female are replaced by 0 and 1. 

Step 5

Labeling Encoded Data

We 

use 

ScikitLearn 

library 

and 

another 

function 

called

the  OneHotEncoder  to  just  pass  the  column  number  creating  a  dummy variable. 

onehotencoder = OneHotEncoder(categorical features = [1]) X = onehotencoder.fit_transform(X).toarray()

X = X[:, 1:]

X

Now,  the  first  2  columns  represent  the  country  and  the  4th  column represents the gender. 

Output

[image: Image 14]

The data is always data divided into testing and training part; we train our model on training data and then we check the accuracy of a model on testing data which helps in evaluating the efficiency of model. 

Step 6

The function ScikitLearn’s train_test_split is used to split the data into test set and training set. keep the train- to- test split ratio as 80:20. 

#Splitting the dataset into the Training set and the Test Set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2) Step 7

In  this  code,  the  training  data  are  transformed  and  fitted  using the StandardScaler function. We standardize our scaling so that we use the same fitted method to scale/transform test data. 

# Feature Scaling

fromsklearn.preprocessing import StandardScaler sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

Output

[image: Image 15]

The  data  is  now  scaled  properly.  Finally,  we  are  done  with  our  data  preprocessing. Now, we will start with our model. 

Step 8

The required Modules are imported here. We use the Sequential module for initializing  the  neural  network  and  the  dense  module  to  add  the  hidden layers. 

# Importing the Keras libraries and packages

import keras

from keras.models import Sequential

from keras.layers import Dense

Step 9

The model named Classifier as our aim is to classify customer churn. Then we use the Sequential module for initialization. 

#Initializing Neural Network

classifier = Sequential()

Step 10

The  dense  function  allows  us  to  add  the  hidden  layers  one  by  one.  In  the code below, many arguments have been used. 

The  first  parameter  output_dim.  It  is  the  number  of  nodes  added  to  this layer. init is the initialization of the  Stochastic Gradient Decent. In a Neural Network  the  weights  are  assigned  to  each  node.  At  initialization,  weights

should be minimal near to zero and we randomly initialize weights using the uniform function. The input_dim parameter is needed only for first layer, as the model does not know the number of our input variables. Here the total number  of  input  variables  is  11.  In  the  second  layer,  the  model automatically  knows  the  number  of  input  variables  from  the  first  hidden layer. 

Execute the following line of code to addthe input layer and the first hidden layer −

classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))

Execute the following line of code to add the second hidden layer −

classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))

Execute the following line of code to add the output layer −

classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))

Step 11

Compiling the ANN

Multiple  layers  are  added  to  our  classifier  until  now.  Its  time  to  compile them  using  the  compile  method.  Arguments  added  in  final  compilation control complete the neural network. 

Here is a brief explanation of the arguments. 

First argument is Optimizer. This is an algorithm used to find the optimal set  of  weights.  This  algorithm  is  called  the  Stochastic  Gradient  Descent (SGD). Here we are using the ‘Adam optimizer’. The SGD depends on loss, so our second parameter is loss. Binary is used for input dependent variable, we  use  logarithmic  loss  function  called  ‘binary_crossentropy’,  and  if  our dependent  variable  has  more  than  two  categories  in  output,  then  we use  ‘categorical_crossentropy’.  We  want  to  improve  performance  of  our neural network based on accuracy, so we add metrics as accuracy. 

# Compiling Neural Network

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics =

['accuracy'])

Step 12

Execute the codes. 

Fitting the ANN to the Training Set

Our model is now train based on the training data. The fit method is used to fit our model. The weights are also optimized to improve model efficiency. 

For  this,  we  have  to  update  the  weights. Batch  size  is  the  number  of observations after which we update the weights. Epoch is the total number of iterations. The values of batch size and epoch are chosen by the trial and error method. 

classifier.fit(X_train, y_train, batch_size = 10, epochs = 50) Predicts and evaluates the model

# Predicting the Test set results

y_pred = classifier.predict(X_test)

y_pred = (y_pred > 0.5)

Predicting a single new observation

# Predicting a single new observation

"""Our goal is to predict if the customer with the following data will leave the bank:

Geography: Spain

Credit Score: 500

Gender: Female

Age: 40

Tenure: 3

Balance: 50000

Number of Products: 2

Has Credit Card: Yes

Is Active Member: Yes

Step 13

Predicting the test set result

The  prediction  result  gives  you  probability  of  the  customer  leaving  the company. Let us convert that probability into binary 0 and 1. 

# Predicting the Test set results

y_pred = classifier.predict(X_test)

y_pred = (y_pred > 0.5)

new_prediction = classifier.predict(sc.transform (np.array([[0.0, 0, 500, 1, 40, 3, 50000, 2, 1, 1, 40000]]))) new_prediction = (new_prediction > 0.5)

Step 14

The  last  step  is  to    evaluate  our  model  performance.  We  already  have original  results  and  thus  to  check  the  accuracy  of  our  model  we  build confusion matrix. 

Making the Confusion Matrix

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred)

print (cm)

Output

loss: 0.3384 acc: 0.8605

[ [1541 54]

[230 175] ]

The Accuracy of our model can be calculated from the confusion matrix as

−

Accuracy = 1541+175/2000=0.858

Our model achieved 85.8% accuracy, which is pretty good. 

5.1 THE FORWARD PROPAGATION ALGORITHM

This subsection teaches in a simple neural network how to write code to do forward propagation (prediction) −

[image: Image 16]

Each data point represent a customer. The first input is how many accounts they own, and the second input is how many children they have. The model will predict how many transactions the user makes in the next year. 

The  input  data  is  pre-loaded  as  input  data,  and  the  weights  are  in  a dictionary  called  weights.  The  array  of  weights  for  the  first  node  in  the hidden  layer  are  in  weights  [‘node_0’],  and  for  the  second  node  in  the hidden layer are in weights[‘node_1’] respectively. 

The weights feeding into the output node are available in weights. 

5.2 THE RECTIFIED LINEAR ACTIVATION FUNCTION

An "activation function" is a function that passes to each node. It transforms the node's input into some output. 

The rectified linear activation function (called ReLU) is widely used in very high-performance  networks.  This  function  takes  a  single  number  as  an input, returning 0 if the input is negative, and input as the output if the input is positive. 

Here are some examples −

relu(4) = 4

relu(-2) = 0

The relu() function is defined as −

max()  function  is  used  to  calculate  the  value  for  the  output  of

relu(). 

the  relu()  function  is  applied  to  node_0_input  to  calculate node_0_output. 

the  relu()  function  is  applied  to  node_1_input  to  calculate node_1_output. 

import numpy as np

input_data = np.array([-1, 2])

weights = {

'node_0': np.array([3, 3]), 

'node_1': np.array([1, 5]), 

'output': np.array([2, -1])

}

node_0_input = (input_data * weights['node_0']).sum() node_0_output = np.tanh(node_0_input)

node_1_input = (input_data * weights['node_1']).sum() node_1_output = np.tanh(node_1_input)

hidden_layer_output = np.array(node_0_output, node_1_output) output =(hidden_layer_output * weights['output']).sum() print(output)

def relu(input):

' 'Define your relu activation function here' ' 

# Calculate the value for the output of the relu function: output output = max(input,0)

# Return the value just calculated

return(output)

# Calculate node 0 value: node_0_output

node_0_input = (input_data * weights['node_0']).sum() node_0_output = relu(node_0_input)

# Calculate node 1 value: node_1_output

node_1_input = (input_data * weights['node_1']).sum() node_1_output = relu(node_1_input)

# Put node values into array: hidden_layer_outputs hidden_layer_outputs = np.array([node_0_output, node_1_output])

# Calculate model output (do not apply relu)

odel_output = (hidden_layer_outputs * weights['output']).sum() print(model_output)# Print model output

Output

0.9950547536867305

-3

5.3 APPLYING THE NETWORK TO MANY OBSERVATIONS/ROWS

OF DATA

This  subsection  defines  a  function  called  predict_with_network().  This function  generate  predictions  for  multiple  data  observations.  The  same weights used above. Similar to the relu() function definition. 

Let  us  define  a  function  called  predict_with_network()  that  accepts  two arguments - input_data_row and weights - and returns a prediction from the network as the output. 

Calculate  the  input  and  output  values  for  each  node,  storing  them  as: node_0_input, node_0_output, node_1_input, and node_1_output. 

To  calculate  the  input  value  of  a  node,  we  multiply  the  relevant  arrays together and compute their sum. 

We apply the relu() function to the input value of the node, to calculate the output value of a node. 

To  generate  predictions  for  each  row  of  the  input_data,  we  use  our predict_with_network()- input_data_row. 

# Define predict_with_network()

def predict_with_network(input_data_row, weights):

# Calculate node 0 value

node_0_input = (input_data_row * weights['node_0']).sum() node_0_output = relu(node_0_input)

# Calculate node 1 value

node_1_input = (input_data_row * weights['node_1']).sum() node_1_output = relu(node_1_input)

# Put node values into array: hidden_layer_outputs hidden_layer_outputs = np.array([node_0_output, node_1_output])

# Calculate model output

input_to_final_layer = (hidden_layer_outputs*weights['output']).sum() model_output = relu(input_to_final_layer)

# Return model output

return(model_output)

# Create empty list to store prediction results results = []

for input_data_row in input_data:

# Append prediction to results

results.append(predict_with_network(input_data_row, weights)) print(results)# Print results

Output

[0, 12]

Here  the  relu  function  is  used  where  relu(26)  =  26  and  relu(-13)=0  and  so on. 

5.4 DEEP MULTI-LAYER NEURAL NETWORKS

Here the code is performing forward propagation for a neural network with two hidden layers. Each hidden layer has at least two nodes. The input data has  been  preloaded  as  input_data.  The  nodes  in  the  first  hidden  layer  are called node_0_0 and node_0_1. 

Their 

weights 

are 

pre-loaded 

as 

weights['node_0_0'] 

and

weights['node_0_1'] respectively. 

The nodes in the second hidden layer are called node_1_0 and node_1_1. 

Their 

weights 

are 

pre-loaded

as weights['node_1_0'] and weights['node_1_1'] respectively. 

[image: Image 17]

We  then  create  a  model  output  from  the  hidden  nodes  using  weights  preloaded as weights['output']. 

node_0_0_input is calculated based on its weights weights['node_0_0'] and the  given  input_data.  Then  the  relu()  function  is  applied  to  get node_0_0_output. 

node_1_0_input is calculated based on its weights weights['node_1_0'] and the outputs from  the first hidden  layer - hidden_0_outputs.  Then the relu() function is applied to get node_1_0_output. 

The  same  process  as  above  are  performed  for  node_1_1_input  to  get node_1_1_output. 

model_output is calculated using weights['output'] and the outputs from the second  hidden  layer  hidden_1_outputs  array.  The  relu()function  to  this output is applied. 

[image: Image 18]

import numpy as np

input_data = np.array([3, 5])

weights = {

'node_0_0': np.array([2, 4]), 

'node_0_1': np.array([4, -5]), 

'node_1_0': np.array([-1, 1]), 

'node_1_1': np.array([2, 2]), 

'output': np.array([2, 7])

}

def predict_with_network(input_data):

# Calculate node 0 in the first hidden layer

node_0_0_input = (input_data * weights['node_0_0']).sum() node_0_0_output = relu(node_0_0_input)

# Calculate node 1 in the first hidden layer

node_0_1_input = (input_data*weights['node_0_1']).sum() node_0_1_output = relu(node_0_1_input)

# Put node values into array: hidden_0_outputs

hidden_0_outputs = np.array([node_0_0_output, node_0_1_output])

# Calculate node 0 in the second hidden layer node_1_0_input = (hidden_0_outputs*weights['node_1_0']).sum() node_1_0_output = relu(node_1_0_input)

# Calculate node 1 in the second hidden layer

node_1_1_input = (hidden_0_outputs*weights['node_1_1']).sum() node_1_1_output = relu(node_1_1_input)

# Put node values into array: hidden_1_outputs

hidden_1_outputs = np.array([node_1_0_output, node_1_1_output])

# Calculate model output: model_output

model_output = (hidden_1_outputs*weights['output']).sum()

# Return model_output

return(model_output)

output = predict_with_network(input_data)

print(output)

Output

364

CHAPTER 6. CONCLUSION

Python is a high level general-purpose programming language that is widely used  by  data  scientist  and  for  producing  machine  and  deep  learning algorithms.  The  tutorial  introduces  Python  and  its  libraries  like  Scipy, Numpy,  Matplotlib  Pandas;  frameworks  like  TensorFlow,  Theano,  Keras. 

The tutorial explains how the frameworks and different libraries can be used to solve complex real world problems. This tutorial guide has been prepared for beginners to help them in understanding the basic concepts related deep learning.  The  tutorial  gives  you  enough  understanding  on  deep  learning from where you can take yourself to a higher level of expertise. 
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